

# **Oak 4-20**

# 4-20mA Current Sensor including galvanic Isolation and 24V power supply

# Datasheet



The picture is slightly different from the original Oak 4-20 device

| Revision history |           |                                           |  |  |  |
|------------------|-----------|-------------------------------------------|--|--|--|
| Date             | Doc. Rev. | Changes                                   |  |  |  |
| 21-Jun-2011      | Rev. 1.5  | Disclaimer update                         |  |  |  |
| 29-Oct-2010      | Rev. 1.4  | Added Operating Temperature Range         |  |  |  |
| 30-Sep-2010      | Rev. 1.3  | Added USB Vendor ID and Product ID        |  |  |  |
| 24-Mar-2010      | Rev. 1.2  | Corrected Measurement Range (section 2.5) |  |  |  |
| 28-Feb-2008      | Rev. 1.1  | Add Section Pin Assignment (section 2.3)  |  |  |  |
| 03-Sep-2007      | Rev. 1.0  | Minor Edits (section 1.1)                 |  |  |  |
| 21-May-2007      | Rev. 0.9  | Preliminary Release                       |  |  |  |



# Contents

| 1.  | Introduction                                  | 3 |
|-----|-----------------------------------------------|---|
| 1.1 | Reference Documents                           | 3 |
| 2.  | Hardware Specifications                       | 4 |
| 2.1 | 24V Power Supply                              | 4 |
| 2.2 | Current Measurement                           | 4 |
| 2.3 | Pin Assignment                                | 4 |
| 2.4 | Equivalent Output Circuit                     | 4 |
| 2.5 | Measurement Range                             |   |
| 2.6 | Supported Sensor Features                     | 4 |
| 2.7 | USB Interface                                 | 5 |
| 2.8 | Operating Temperature Range                   | 5 |
| 3.  | Software Specifications                       | 6 |
| 3.1 | INTERRUPT IN Report Contents (Real time data) |   |
| 3.2 | FEATURE Report Commands                       |   |
| 4.  | Technical Specifications                      | 8 |
| 4.1 | Current Consumption                           | 8 |
| 4.2 | Mechanical Dimensions                         |   |
| 4.3 | RoHS Compliance                               | 8 |



### 1. Introduction

The Oak 4-20 is a USB attached precision current sensor. It is designed to be used with off-theshelf sensors and instruments that offer a standard 4-20mA interface.

The external measuring interface is completely isolated from the USB circuit. In addition, Oak 4-20 provides a galvanically isolated 24V power supply, so the majority of external sensors can be attached without any additional hardware, using only two single wires.

To simplify installation, each Oak 4-20 has a disconnectable interface on the external side. The mating connector has screw terminals to allow for a quick attachment of bare wires.

The Oak 4-20 can be integrated in a custom application very easily. The operating power as well as real time sensor data and uncritical sensor configuration data are all transferred through a simple USB cable. The very low power consumption, including automatic entering into sleep mode, allows using the device not only in fixed installations, but also in mobile applications.

#### **1.1 Reference Documents**

Programming Guide to the Oak Sensor Family

## 2. Hardware Specifications

### 2.1 24V Power Supply

The 24V power supply is galvanically isolated from the USB circuit. It supplies up to 30 mA on the external terminals.

The power supply has built-in short circuit protection.

#### 2.2 Current Measurement

The current is measured using a 16 bit A to D converter, along with a high precision voltage reference.

### 2.3 Pin Assignment

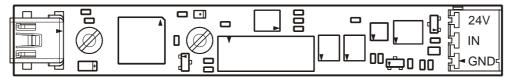



Figure 1: Pin assignment

### 2.4 Equivalent Output Circuit

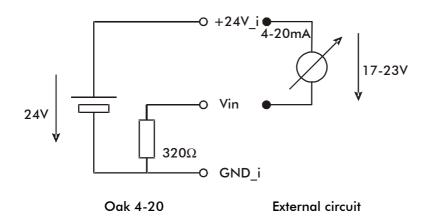



Figure 2: Equivalent output circuit

#### 2.5 Measurement Range

Sensor data are provided in amperes:

| Current | Range:      | 0 – 20.48 mA |
|---------|-------------|--------------|
|         | Resolution: | 0.0012 mA    |

#### 2.6 Supported Sensor Features

Read current in amperes

Sample rate adjustable

#### 2.7 USB Interface

| Interface:     | USB 2.0 Full Speed (12Mbits/s) |
|----------------|--------------------------------|
| Connector:     | Standard USB Mini-B            |
| Device Class:  | HID                            |
| Vendor ID:     | 0x1B67                         |
| Product ID:    | 0x0009                         |
| Sampling Rate: | 148ms to 65s, user adjustable  |
| Report Rate:   | 1ms to 65s, user adjustable    |

### 2.8 Operating Temperature Range

Minimum Operating Temperature: -10°C Maximum Operating Temperature: +85°C



### 3. Software Specifications

All Oak Sensors are implemented as HID devices. Thus driver support is built into all major operating systems.

Captured sensor Data is transmitted through an INTERRUPT IN reports. Therefore real time processing can be guaranteed. This data can be received by the host using regular file read operations. Chapter 3.1 describes the contents of this report.

On an independent communication channel, sensor configuration is done using FEATURE reports that are 32 Bytes in length. Special operating system calls exist to transmit / receive feature reports. Chapter 3.2 shows the structure of a feature report for each supported command.

Please refer also to the document "Programming Guide to the Oak Sensor Family" for more details.

### 3.1 INTERRUPT IN Report Contents (Real time data)

| 16 Bit Frame Number |         | 10 <sup>-3</sup> | S |
|---------------------|---------|------------------|---|
| 16 Bit              | Current | 10-6             | А |

#### 3.2 FEATURE Report Commands

| Byte#    | 0                    | 1                                        | 2            | 3       | 4    | 5       |  |  |
|----------|----------------------|------------------------------------------|--------------|---------|------|---------|--|--|
| Content  | GnS                  | Tgt                                      | 0x01         | 0x00    | 0x00 | RPTMODE |  |  |
| GnS:     | 0 = S<br>1 = G       |                                          |              |         |      |         |  |  |
| Tgt      | 0 = RAM<br>1 = Flash |                                          |              |         |      |         |  |  |
| RPTMODE: | 1 = A                | fter Samplin<br>fter Change<br>ixed Rate | g (Factory D | efault) |      |         |  |  |

#### 3.2.2 LED Mode

3.2.1 Report Mode

| Byte#                                                                                                       | 0                    | 1   | 2    | 3    | 4    | 5       |  |
|-------------------------------------------------------------------------------------------------------------|----------------------|-----|------|------|------|---------|--|
| Content                                                                                                     | GnS                  | Tgt | 0x01 | 0x01 | 0x00 | LEDMODE |  |
| GnS:                                                                                                        | 0 = Set<br>1 = Get   |     |      |      |      |         |  |
| Tgt                                                                                                         | 0 = RAM<br>1 = Flash |     |      |      |      |         |  |
| LEDMODE:<br>0 = Off (Factory Default)<br>1 = On<br>2 = Blink Slowly<br>3 = Blink Fast<br>4 = Blink 4 pulses |                      |     |      |      |      |         |  |



#### 3.2.3 Report Rate

Number of milliseconds between two IN reports. This parameter will only be regarded if Report Mode = 2 (fixed rate)

| Byte#    | 0                                                     | 1           | 2    | 3    | 4    | 5              | 6              |
|----------|-------------------------------------------------------|-------------|------|------|------|----------------|----------------|
| Content  | GnS                                                   | Tgt         | 0x02 | 0x00 | 0x00 | RptRate<br>LSB | RptRate<br>MSB |
| GnS:     | 0 = S<br>1 = G                                        |             |      |      |      |                |                |
| Tgt      | $\begin{array}{l} O \ = \ R \\ 1 \ = \ F \end{array}$ |             |      |      |      |                |                |
| RptRate: | Repor                                                 | t Rate [ms] |      |      |      |                |                |

#### 3.2.4 Sample Rate

This is the actual sample rate the sensor is working on. If Report Mode = 0 (After Sampling) this is also the rate at which the device reports values to the host PC.

| Byte#   | 0               | 1   | 2    | 3    | 4    | 5               | 6               |
|---------|-----------------|-----|------|------|------|-----------------|-----------------|
| Content | GnS             | Tgt | 0x02 | 0x01 | 0x00 | SampRate<br>LSB | SampRate<br>MSB |
| GnS:    | 0 = So<br>1 = G |     |      |      |      |                 |                 |
| Tgt     | 0 = R.          | AM  |      |      |      |                 |                 |

# 1 = Flash

SampRate: Sample Rate [ms]

#### 3.2.5 User Device Name

| Byte#     | 0                                                                                                  | 1   | 2    | 3    | 4    | 5-25       |
|-----------|----------------------------------------------------------------------------------------------------|-----|------|------|------|------------|
| Content   | GnS                                                                                                | Tgt | 0x15 | 0x00 | 0x00 | UsrDevName |
| GnS:      | 0 = Se<br>1 = G                                                                                    |     |      |      |      |            |
| Tgt       | 0 = RAM<br>1 = Flash                                                                               |     |      |      |      |            |
| UsrDevNan | JsrDevName: User defined name for the whole device<br>Null-terminated string, max. 20+1 characters |     |      |      |      |            |

#### 3.2.6 User Channel Name

| Byte#     | 0                                                                                       | 1                    | 2    | 3    | 4    | 5-25      |  |  |
|-----------|-----------------------------------------------------------------------------------------|----------------------|------|------|------|-----------|--|--|
| Content   | GnS                                                                                     | Tgt                  | 0x15 | ChP1 | 0x00 | UsrChName |  |  |
| GnS:      | 0 = S<br>1 = G                                                                          |                      |      |      |      |           |  |  |
| Tgt       | • •                                                                                     | 0 = RAM<br>1 = Flash |      |      |      |           |  |  |
| ChP1      | 1 = Channel 0 (Frame Number)<br>2 = Channel 1 (Current)                                 |                      |      |      |      |           |  |  |
| UsrChName | Name: User defined name for the channel<br>Null-terminated string, max. 20+1 characters |                      |      |      |      |           |  |  |



## 4. Technical Specifications

#### 4.1 Current Consumption

| Symbol                              | Parameter         | Conditions      | Min | Тур | Max | Unit |
|-------------------------------------|-------------------|-----------------|-----|-----|-----|------|
| <b>I</b> <sub>q</sub> <sup>1)</sup> | Operating current |                 |     |     | 60  | mA   |
| I <sub>Stby</sub>                   | Standby current   | No USB activity |     |     | 500 | μΑ   |

<sup>1)</sup> No external load current

#### 4.2 Mechanical Dimensions

The PCB is designed to be mounted using two standard M2 screws. There are no components on the back side of the pcb, but there are through-hole components on top.

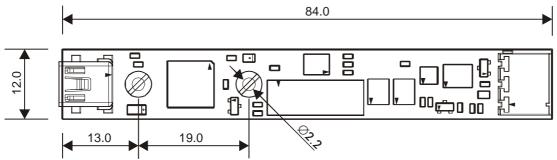



Figure: Mechanical dimensions of the Oak 4-20 sensor

### 4.3 **RoHS** Compliance

Unless otherwise stated, all Toradex products comply with the European Union's Directive 2002/95/EC: "Restrictions of Hazardous Substances".

#### Oak 4-20 Datasheet



#### **Disclaimer:**

Copyright © Toradex AG. All rights reserved. All data is for information purposes only and not guaranteed for legal purposes. Information has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Brand and product names are trademarks or registered trademarks of their respective owners.

Specifications are subject to change without notice.