

Oak IO

24 Digital Inputs / Outputs 3.3V or 5V Logic Level

Datasheet

Revision history

Date	Doc. Rev.	Changes
21-Jun-2011	Rev. 1.5	Disclaimer Update
17-Jan-2011	Rev. 1.4	Minor Edits
29-Oct-2010	Rev. 1.3	Added Operating Temperature Range
30-Sep-2010	Rev. 1.2	Added USB Vendor ID and Product ID
28-May-2009	Rev. 1.1	Add description of Output setting via Feature Report
28-Feb-2008	Rev. 1.0	Initial Release
07-Nov-2007	Rev. 0.9	Preliminary Release

Contents

1.	Introduction	3
1.1	Reference Documents	
2.	Hardware Specifications	4
2.1	I/O Ports	4
2.2	I/O Specifications	4
2.3	Equivalent Input / Output Circuit	
2.4	Switch Input	
2.5	Pin Assignment	6
2.6	Jumper Setting	
2.7	Supported I/O Features	7
2.8	USB Interface	7
2.9	Operating Temperature Range	7
3.	Software Specifications	8
3.1	INTERRUPT OUT Report Contents (Real time data)	
3.2	INTERRUPT IN Report Contents (Real time data)	
3.3	FEATURE Report Commands	
4.	Technical Specifications	. 13
4.1	Current Consumption	
4.2	Mechanical Dimensions	
4.3	RoHS Compliance	
	•	

1. Introduction

The Oak IO is a USB attached digital input / output board. Each of the 24 I/Os can be configured individually to act as CMOS input, CMOS output or open drain I/O. The logic level of all I/Os can be set to 3.3V or 5V by a single jumper.

8 of the 24 I/O lines are ESD protected and have disconnectable interfaces. The mating connectors feature screw terminals to allow a quick attachment of bare wires. These I/O lines are provided with pull up resistors to allow direct sensing of switches without external circuitry.

For the other 16 I/O lines, a pin header with a 2.54mm pitch is provided for a simple connection of the inputs and outputs.

The output lines can be set with a maximum USB latency of 1ms. The report rate for reading the I/O pins is user adjustable from 1ms to 65s. The minimum USB latency for reading the inputs is therefore 1ms.

The Oak IO can be integrated in a custom application very easily. The operating power as well as real time input/output data and uncritical device configuration data are all transferred through a simple USB cable. The very low power consumption, including automatic entering into sleep mode, allows using the device not only in fixed installation, but also in mobile applications.

1.1 Reference Documents

Cypress CY8C24794 Datasheet: http://download.cypress.com.edgesuite.net/design_resources/datasheets/contents/ cy8c24794 8.pdf

Programming Guide to the Oak Sensor Family

2. Hardware Specifications

2.1 I/O Ports

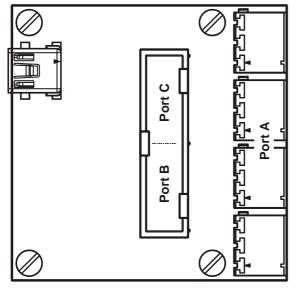


Figure 1: Different ports of the Oak IO device

2.2 I/O Specifications

The Oak IO board can be used in the 3.3V or in the 5V logic level mode. The mode can be changed globally by displacing a jumper.

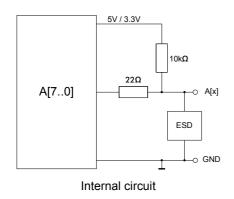
Each of the 24 I/Os can be configured individually to act as CMOS input, CMOS output or open drain I/O. The I/O mode is different for regular operation and standby. For being USB compliant, the output pins of the board have to be configured as high impedance for standby mode. With feature reports, the Oak IO can be configured to not change the state of the output pins in the standby mode. In this configuration, the Oak IO is not USB compliant. The power of the pull-up resistors of the I/O port A are always switched off in standby mode.

The Oak IO board uses the GPIOs of the Cypress CY8C24794 microcontroller for the digital inputs and outputs. The specification for the ports can be found in the documentation of this controller. The following specifications are a short overview of the most important figures.

	3.3V	mode	5V mode		
Description	Min.	Max.	Min.	Max.	Notes
DC Input Voltage	-0.5V	3.8V	-0.5V	V _{USB} *+0.5V	
Max. Current	-25mA	50mA	-25mA	50mA	Only one pin used

2.2.1	Absolute	Maximum	Ratings	at I/O Pins
-------	----------	---------	----------------	-------------

*V_{USB} is typically 5V, for more information, see USB specification.


	3.3V mode		5V mode		
Description	Min.	Max.	Min.	Max.	Notes
Output High Level	2.0V	-	V _{USB} *-1.3V	-	IOH = 10mA
Output Low Level	-	1.3V	-	1.3V	IOL = 25mA
Output High Level	2.3V	-	V _{USB} *-1.0V	-	IOH = 1mA
Output Low Level	-	0.75	-	0.75	IOL = 1mA
Input High Level	2.1V	-	2.1V	-	
Input Low Level	-	0.8V	-	0.8V	

2.2.2 DC I/O Pin Specifications

*V_{USB} is normally 5V, for more information, see USB specification.

2.3 Equivalent Input / Output Circuit

The equivalent input circuit of the I/O port A is different from the port B and C, because of the ESD protection and the internal pull up resistor.

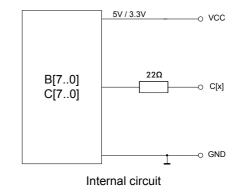


Figure 2: I/O circuit for port A

2.4 Switch Input

The I/O port A provides internally $10k\Omega$ pull-up resistors. Therefore, switches can be connected to this port without any additional external circuit.

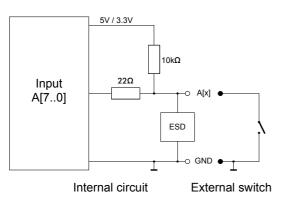


Figure 4: Connecting a switch to port A

2.5 Pin Assignment

In the default configuration, pin 0 to 3 of the I/O block A and the whole block B are configured as input whereas the pin 4 to 7 of the I/O block A and the whole block C are configured as output. This configuration can be changed by using a feature reports.

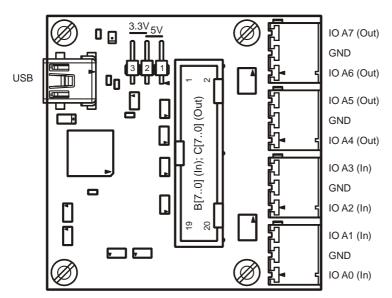


Figure 5: Pin assignment of the Oak IO device (default configuration in parentheses)

The following table contains the pin assignment of the pin header of the I/O block B and C.

Pin	Name	Default configuration
1	IO B[0]	Input
2	IO B[1]	Input
3	IO B[2]	Input
4	IO B[3]	Input
5	VCC	
6	GND	
7	IO B[4]	Input
8	IO B[5]	Input
9	IO B[6]	Input
10	IO B[7]	Input
11	IO C[0]	Output
12	IO C[1]	Output
13	IO C[2]	Output
14	IO C[3]	Output
15	VCC_Stby	
16	GND	
17	IO C[4]	Output
18	IO C[5]	Output
19	IO C[6]	Output
20	IO C[7]	Output

Oak IO Datasheet

VCC and VCC_Stby supply 3.3V or 5V to ay external circuit (depending on the jumper setting). In the standby mode, the VCC output is switched off whereas the VCC Stby output is still powered.

Attention: For being USB compliant, do neither draw more than 150μ A in standby mode nor more than 450mA totally from VCC and VCC_Stby at any time .

2.6 Jumper Setting

With the jumper, the voltage level mode can be chosen. If the jumper is set between pin 1 and 2, the I/O board is powered with 5V. If the jumper is set between pin 2 and 3, the board runs from a regulated 3.3V supply.

Attention: Please change the jumper position only when the board is disconnected from the host computer and the external circuit.

2.7 Supported I/O Features

Set the digital outputs

Read the digital inputs and outputs

Set I/O direction, output mode and standby behavior of each channel

Set update rate

2.8 USB Interface

Interface:	USB 2.0 Full Speed (12Mbits/s)
Connector:	Standard USB Mini-B
Device Class:	HID
Vendor ID:	0x1B67
Product ID:	0x0010
Update Rate:	1ms to 65s, user adjustable
Report Rate:	1ms to 65s, user adjustable

2.9 Operating Temperature Range

Minimum Operating Temperature: -10°C Maximum Operating Temperature: +85°C

3. Software Specifications

All Oak Devices are implemented as HID devices. Thus driver support is built into all major operating systems.

The digital output data is transmitted through an INTERRUPT OUT report, whereas the reading of the digital input data is transmitted through an INTERRUPT IN report. Therefore real time processing can be guaranteed. The data can be sent and received by the host using regular file write and read operation. Chapter 3.1 and 3.2 describes the contents of this report.

On an independent communication channel, device configuration is done using FEATURE reports that are 32 Bytes in length. Special operating system calls exist to transmit / receive feature reports. Chapter 3.3 shows the structure of a feature report for each supported command.

Please refer also to the document "Programming Guide to the Oak Sensor Family" for more details.

3.1 INTERRUPT OUT Report Contents (Real time data)

The interrupt out report contains the information for switching all the 24 I/O channels.

- 16 Bit Command for I/O port A[7..0]
- 16 Bit Command for I/O port B[7..0]
- 16 Bit Command for I/O port C[7..0]

For each I/O port, a 16 bit setting command has to be sent. Each command has the following structure. The system uses the Little Endian format for the 16 bit number.

Bit#	70	158
Content	OUT2CMD[70]	OUT1CMD[70]

Two bit for each I/O line describe the command (OUT1CMD[x] and OUT2CMD[x]). The following table explains the usage of these commands.

OUT2CMD[x]	OUT1CMD[x]	Function
0	0	Set pin[x] to 0
0	1	Set pin[x] to 1
1	0	Toggle pin[x]
1	1	Hold previous state of pin[x]

Port	Content	16Bit Part	Command	Function
IO A	OUT1CMD OUT2CMD	LSB MSB	0Ь1001′0111 0Ь0000′0000	Set port A to 0b10010111
IO B	OUT1CMD OUT2CMD	LSB MSB	ОЬ1111′1010 ОЬ1111′1111	Toggle pin 0 and 2 of port B, leave other pins unchanged
IO C	OUT1CMD OUT2CMD	LSB MSB	Ob1111′1111 Ob1111′1111	Leave port C unchanged

3.2 INTERRUPT IN Report Contents (Real time data)

The interrupt in report contains the logic level of all ports.

 16 Bit
 Frame Number
 10⁻³

 8 Bit
 I/O block A[7..0]

8 Bit I/O block B[7..0]

8 Bit I/O block C[7..0]

3.3 FEATURE Report Commands

3.3.1 Report Mode								
Byte#	0	1	2	3	4	5		
Content	GnS	Tgt	0x01	0x00	0x00	RPTMODE		
GnS:		0 = Set 1 = Get						
Tgt		0 = RAM 1 = Flash						
RPTMODE: 0 = After Sampling (Factory Default) 1 = After Change 2 = Fixed Rate								

s

3.3.2 LED Mode

Byte#	0	1	2	3	4	5			
Content	GnS	Tgt	0x01	0x01	0x00	LEDMODE			
GnS:		0 = Set 1 = Get							
Tgt	0 = R 1 = F								
LEDMODE:	0 = Off (Factory Default) 1 = On 2 = Blink Slowly 3 = Blink Fast 4 = Blink 4 pulses								

3.3.3 Report Rate

Number of milliseconds between two IN reports. This parameter will only be regarded if Report Mode = 2 (fixed rate)

Byte#	0	1	2	3	4	5	6
Content	GnS	Tgt	0x02	0x00	0x00	RptRate LSB	RptRate MSB
GnS:	0 = So 1 = G						
Tgt	0 = R 1 = F						
RptRate:	Repor	t Rate [ms]					

3.3.4 Sample Rate

This is the actual sample rate the device is working on. If Report Mode = 0 (After Sampling) this is also the rate at which the device reports values to the host PC.

also the rate	e at which th	e device rep	ports values t	o the host PC	.					
Byte#	0	1	2	3	4	5	6			
Content	GnS	Tgt	0x02	0x01	0x00	SampRate LSB	SampRate MSB			
GnS:	0 = Se 1 = Ge									
Tgt	0 = RA 1 = Fle									
SampRate:	Sample	e Rate [ms]								
3.3.5 Use	er Device Na	me								
Byte#	0	1	2	3	4	5-25				
Content	GnS	Tgt	0x15	0x00	0x00	UsrDevNan	ne			
GnS:	0 = Se 1 = Ge									
Tgt	$\begin{array}{ll} fgt & 0 = RAM \\ 1 = Flash \end{array}$									
UsrDevNan			e for the who ring, max. 20		ers					
3.3.6 Use	er Channel N	lame								
Byte#	0	1	2	3	4	5-25				
Content	GnS	Tgt	0x15	ChP1	0x00	UsrChNam	ie			
GnS:	0 = Se 1 = Ge	-								
Tgt	0 = RA 1 = Flo									
ChP1	2 = Cł 3 = Cł	nannel 1 (l/ nannel 2 (l/	ame Numbe O block A[7 O block B[7 O block C[7.	.Ó]) O])						
UsrChName			e for the cha ring, max. 20		ers					

3.3.7 Port A Direction

This configures the pins of the port A as inputs or outputs.

Byte#	0	1	2	3	4	5				
Content	GnS	Tgt	0x01	0x02	0x00	DIR7DIR0				
GnS:	0 = So 1 = G									
Tgt	0 = RAM 1 = Flash									
DIR7DIR0				actory Defau Factory Defa						

3.3.8 Port B Direction

This configures the pins of the port B as inputs or outputs.

Byte#	0	1	2	3	4	5			
Content	GnS	Tgt	0x01	0x03	0x00	DIR7DIR0			
GnS:	0 = S 1 = G								
Tgt	0 = RAM 1 = Flash								
DIR7DIR0: 0 = Configures pin as input (Factory Default) 1 = Configures pin as output									

3.3.9 Port C Direction

This configures the pins of the port C as inputs or outputs.

Byte#	0	1	2	3	4	5				
Content	GnS	Tgt	0x01	0x04	0x00	DIR7DIR0				
GnS:	0 = S 1 = G									
Tgt		0 = RAM 1 = Flash								
DIR7DIR0:		onfigures pi onfigures pi	n as input n as output (l	Factory Defa	ult)					

3.3.10 Port A Output Mode

This configures the pins of the port A as CMOS compatible push-pull or open drain output.

Byte#	0	1	2	3	4	5				
Content	GnS	Tgt	0x01	0x05	0x00	OM7OM0				
GnS:	0 = S 1 = G									
Tgt		0 = RAM 1 = Flash								
OM7OM0	1 = C	 0 = Configures pin as CMOS compatible push-pull output (Factory Default) 1 = Configures pin as open drain output This setting is ignored, if the pin is configured as input 								

3.3.11 Port B Output Mode

This configures the pins of the port B as CMOS compatible push-pull or open drain output.

Byte#	0	1	2	3	4	5				
Content	GnS	Tgt	0x01	0x06	0x00	OM7OM0				
GnS:	0 = S 1 = G									
Tgt		0 = RAM 1 = Flash								
OM7OM0	1 = C	Configures pi	n as open dr			put (Factory Default)				

3.3.12 Port C Output Mode

This configures the pins of the port C as CMOS compatible push-pull or open drain output.

Byte#	0	1	2	3	4	5
Content	GnS	Tgt	0x01	0x07	0x00	OM7OM0
GnS:	0 = S 1 = G					
Tgt	0 = R 1 = F					
OM7OM0	1 = C	onfigures pi	n as open dr			out (Factory Default)

3.3.13 Standby Configuration

This configures the ports as inputs or outputs.

Byte#	0	1	2	3	4	5	6	7	8
Content	GnS	Tgt	0x04	0x00	0x00	StbA7	StbB7	StbC7	0x00
						StbA0	StbB0	StbC0	
GnS:	-	= Set = Get							
Tgt	-	= RAM = Flash							
StbA7Stb		•		•	•	oy (Factory for standby	,		
StbB7Stb		•		•	•	oy (Factory for standby			
StbC7Stb		•		•	•	oy (Factory for standby			

Attention: For being USB compliant, set all pins to the standby configuration "high Z during standby". Otherwise, depending on the external circuit the board can consume more current in the standby mode than allowed.

3.3.14 Set GPIO

This Feature Report can be used instead of the Interrupt Out Report for setting the GPIO. This feature is only available on modules with firmware version 1.1 or higher.

Byte#	0	1	2	3	4	5	6	7	8	9	10
Content	GnS	0x02	0x06	0x00	0x00	A1	A2	B1	B2	C1	C2
GnS:		0 = Set 1 = Get									
A1:		OUT1CMD of block A (see section 3.1)									
A2:		OUT2CMD of block A (see section 3.1)									
B1:		OUTICA	۸D of blo	ock B (se	e sectior	า 3.1)					
B2:		OUT2CA	AD of blo	ock B (se	e sectior	า 3.1)					
C1:		OUTICA	AD of blo	ock C (se	e sectio	n 3.1)					
C2:		OUT2CA	۸D of blo	ock C (se	e sectio	n 3.1)					

4. Technical Specifications

4.1 Current Consumption

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _q	Operating current	No load on any I/O			30	mA
I _{Stby}	Standby current	No USB activity, only if			500	μΑ
		pins are configured as				
		"high Z during Standby"				

4.2 Mechanical Dimensions

The PCB is designed to be mounted using four standard M2 screws. There are no components on the back side of the PCB, but there are through-hole components on top.

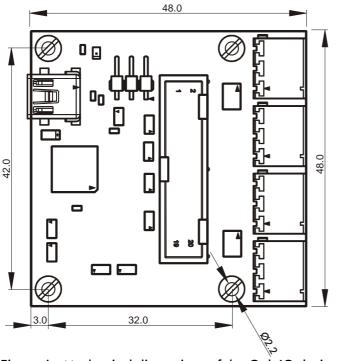


Figure 6: Mechanical dimensions of the Oak IO device

4.3 **RoHS** Compliance

Unless otherwise stated, all Toradex products comply with the European Union's Directive 2002/95/EC: "Restrictions of Hazardous Substances".

Oak IO Datasheet

Disclaimer:

Copyright © Toradex AG. All rights reserved. All data is for information purposes only and not guaranteed for legal purposes. Information has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Brand and product names are trademarks or registered trademarks of their respective owners.

Specifications are subject to change without notice.