

Oak Move Passive Infrared Motion Detector

Datasheet

Revision history

Date	Doc. Rev.	Changes
21-Jun-2011	Rev. 1.5	Disclaimer Update
17-Jan-2011	Rev. 1.4	Modified Sample Rate Range
29-Oct-2010	Rev. 1.3	Added Operating Temperature Range
30-Sep-2010	Rev. 1.2	Added USB Vendor ID and Product ID
29-Feb-2008	Rev. 1.1	Minor Edits (section 1.1)
25-Mar-2007	Rev. 1.0	Initial Release

Contents

1.	Introduction	. 3
1.1	Reference Documents	. 3
2.	Hardware Specifications	.4
2.1	Sensor: Panasonic AMN11111	
2.2	Measurement Range	. 4
2.3	Supported Sensor Features	
2.4	USB Interface	
2.5	Operating Temperature Range	. 4
3.	Software Specifications	. 5
3.1	INTERRUPT IN Report Contents (Real time data)	. 5
3.2	FEATURE Report Commands	
4.	Technical Specifications	. 7
4.1	Electrical Specifications	. 7
4.2	Mechanical Dimensions	
4.3	RoHS Compliance	

1. Introduction

The Oak-Move is a USB attached motion detector.

The Oak-Move can be integrated in a custom application very easily. The operating power as well as real time sensor data and uncritical sensor configuration data are all transferred through a simple USB cable. The very low power consumption, including automatic entering into sleep mode, allows using the device not only in fixed installations, but also in mobile applications.

1.1 Reference Documents

Sensor Datasheet: http://files.toradex.com/Oak/Datasheets/Components/Oak_Move/AMN11111.pdf

Programming Guide to the Oak Sensor Family

2. Hardware Specifications

2.1 Sensor: Panasonic AMN11111

The AMN11111 is a fully integrated motion sensor with a multi-surface lens construction and an optimized optical filter. To improve further on the performance of this device, it comes with a quad type passive infrared element to reduce false triggering and improve sensitivity.

2.2 Measurement Range

Range:Approximately 5 meters (200 inch)Sensitivity:Detects movement of approximately 30cm (11.811inch) at a distance of 2 meters
(80 inch) to the sensor.

At larger quantities, other detection characteristics are available.

For more details, please refer to the sensor datasheet (link in chapter 1.1)

2.3 Supported Sensor Features

Count number of motion events during sampling period Sample rate adjustable

Sample rate adjustable

2.4 USB Interface

Interface:USB 2.0 Full Speed (12Mbit/s)Connector:Standard USB Mini-BDevice Class:HIDVendor ID:0x1B67Product ID:0x0006Sampling Rate:2ms to 65s, user adjustableReport Rate:1ms to 65s, user adjustable

2.5 Operating Temperature Range

Minimum Operating Temperature: -10°C Maximum Operating Temperature: +60°C

3. Software Specifications

All Oak Sensors are implemented as HID devices. Thus driver support is built into all major operating systems.

Captured sensor Data is transmitted through an INTERRUPT IN reports. Therefore real time processing can be guaranteed. This data can be received by the host using regular file read operations. Chapter 0 describes the contents of this report.

On an independent communication channel, sensor configuration is done using FEATURE reports that are 32 Bytes in length. Special operating system calls exist to transmit / receive feature reports. Chapter 3.2 shows the structure of a feature report for each supported command.

Please refer also to the document "Programming Guide to the Oak Sensor Family" for more details.

3.1 INTERRUPT IN Report Contents (Real time data)

16 Bit Frame Number 10⁻³ s

16 Bit Number of motion events 10⁻⁴ -

3.2 FEATURE Report Commands

Byte#	0	1	2	3	4	5
Content	GnS	Tgt	0x01	0x00	0x00	RPTMODE
GnS:	0 = S 1 = G					
Tgt	0 = R 1 = F					
RPTMODE:	1 = A	fter Samplin fter Change ixed Rate	g (Factory D	efault)		

3.2.2 LED Mode

3.2.1 Report Mode

Byte#	0	1	2	3	4	5
Content	GnS	Tgt	0x01	0x01	0x00	LEDMODE
GnS:	0 = S 1 = G					
Tgt	0 = R 1 = F					
LEDMODE:	1 = C 2 = B 3 = B	off (Factory E on link Slowly link Fast link 4 pulses	·			

3.2.3 Report Rate

Number of milliseconds between two IN reports. This parameter will only be regarded if Report Mode = 2 (fixed rate)

Byte#	0	1	2	3	4	5	6
Content	GnS	Tgt	0x02	0x00	0x00	RptRate LSB	RptRate MSB
GnS:	$\begin{array}{l} 0 \ = \ S \\ 1 \ = \ G \end{array}$						
Tgt	$\begin{array}{l} O \ = \ R \\ 1 \ = \ F \end{array}$						
RptRate:	Repor	t Rate [ms]					

3.2.4 Sample Rate

This is the actual sample rate the sensor is working on. If Report Mode = 0 (After Sampling) this is also the rate at which the device reports values to the host PC.

Byte#	0	1	2	3	4	5	6		
Content	GnS	Tgt	0x02	0x01	0x00	SampRate LSB	SampRate MSB		
GnS:		0 = Set 1 = Get							
Tgt	0 = RAM 1 = Flash								
SampRate: Sample Rate [ms]									
3.2.5 User	⁻ Device No	ime							
Byte#	0	1	2	3	4	5-25			
Content	GnS	Tgt	0x15	0x00	0x00	UsrDevNan	ne		
GnS:	GnS: 0 = Set 1 = Get								
Tgt	0 = RAM 1 = Flash								
UsrDevName: User defined name for the whole device Null-terminated string, max. 20+1 characters									

3.2.6 User Channel Name

Byte#	0	1	2	3	4	5-25			
Content	GnS	Tgt	0x15	ChP1	0x00	UsrChName			
GnS:		0 = Set 1 = Get							
Tgt	• •	0 = RAM 1 = Flash							
ChP1	1 = Channel 0 (Frame Number) 2 = Channel 1 (Number of Motion Events)								
UsrChNam	e: User defined name for the channel Null-terminated string, max. 20+1 characters								

4. Technical Specifications

4.1 Electrical Specifications

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _q ¹⁾	Operating current				20	mA
I _{Stby}	Standby current	No USB activity			500	μΑ

¹⁾ The maximum operating current is mainly influenced by the on board LED.

4.2 Mechanical Dimensions

The PCB is designed to be mounted using two standard M2 screws. There are no components on the back side of the PCB, but the three sensor leads protrude beyond the back side pcb surface.

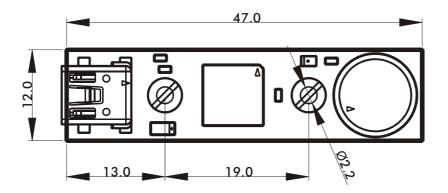


Figure 1: Mechanical dimensions of the Oak Move sensor

4.3 **RoHS Compliance**

Unless otherwise stated, all Toradex products comply with the European Union's Directive 2002/95/EC: "Restrictions of Hazardous Substances".

Oak Move Datasheet

Disclaimer:

Copyright © Toradex AG. All rights reserved. All data is for information purposes only and not guaranteed for legal purposes. Information has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Brand and product names are trademarks or registered trademarks of their respective owners.

Specifications are subject to change without notice.